Should state mandate immunizations? N...

Should state mandate immunizations? New requirements effective in July

There are 9650 comments on the story from May 4, 2011, titled Should state mandate immunizations? New requirements effective in July. In it, reports that:

Immunizations are one of the most efficient and cost-effective ways to protect children against childhood diseases and Tennessee law requires documented immunizations.

Join the discussion below, or

get real

Lexington, TN

#9046 Feb 28, 2014
Persistent behavioral impairments and alterations of brain dopamine system after early postnatal administration of thimerosal in rats.

Behav Brain Res. 2011 Sep 30;223(1):107-18. doi: 10.1016/j.bbr.2011.04.026. Epub 2011 Apr 28.

Olczak M, Duszczyk M, Mierzejewski P, Meyza K, Majewska MD. Department of Pharmacology and Physiology of the Nervous System, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland.

The neurotoxic organomercurial thimerosal (THIM), used for decades as vaccine preservative, is a suspected factor in the pathogenesis of some neurodevelopmental disorders. Previously we showed that neonatal administration of THIM at doses equivalent to those used in infant vaccines or higher, causes lasting alterations in the brain opioid system in rats. Here we investigated neonatal treatment with THIM (at doses 12, 240, 1440 and 3000 μg Hg/kg) on behaviors, which are characteristically altered in autism, such as locomotor activity, anxiety, social interactions, spatial learning, and on the brain dopaminergic system in Wistar rats of both sexes. Adult male and female rats, which were exposed to the entire range of THIM doses during the early postnatal life, manifested impairments of locomotor activity and increased anxiety/neophobia in the open field test. In animals of both sexes treated with the highest THIM dose, the frequency of prosocial interactions was reduced, while the frequency of asocial/antisocial interactions was increased in males, but decreased in females. Neonatal THIM treatment did not significantly affect spatial learning and memory. THIM-exposed rats also manifested reduced haloperidol-induced catalepsy, accompanied by a marked decline in the density of striatal D₂ receptors, measured by immunohistochemical staining, suggesting alterations to the brain dopaminergic system. Males were more sensitive than females to some neurodisruptive/neurotoxic actions of THIM. These data document that early postnatal THIM administration causes lasting neurobehavioral impairments and neurochemical alterations in the brain, dependent on dose and sex. If similar changes occur in THIM/mercurial-exposed children, they could contribute do neurodevelopmental disorders.
get real

Lexington, TN

#9047 Feb 28, 2014
B-Lymphocytes from a Population of Children with Autism Spectrum Disorder and Their Unaffected Siblings Exhibit Hypersensitivity to Thimerosal

J Toxicol. 2013;2013:801517. Epub 2013 Jun 9.

Sharpe MA, Gist TL, Baskin DS.

Department of Neurosurgery, The Methodist Neurological Institute, Houston, TX.


The role of thimerosal containing vaccines in the development of autism spectrum disorder (ASD) has been an area of intense debate, as has the presence of mercury dental amalgams and fish ingestion by pregnant mothers. We studied the effects of thimerosal on cell proliferation and mitochondrial function from B-lymphocytes taken from individuals with autism, their nonautistic twins, and their nontwin siblings. Eleven families were examined and compared to matched controls. B-cells were grown with increasing levels of thimerosal, and various assays (LDH, XTT, DCFH, etc.) were performed to examine the effects on cellular proliferation and mitochondrial function. A subpopulation of eight individuals (4 ASD, 2 twins, and 2 siblings) from four of the families showed thimerosal hypersensitivity, whereas none of the control individuals displayed this response. The thimerosal concentration required to inhibit cell proliferation in these individuals was only 40% of controls. Cells hypersensitive to thimerosal also had higher levels of oxidative stress markers, protein carbonyls, and oxidant generation. This suggests certain individuals with a mild mitochondrial defect may be highly susceptible to mitochondrial specific toxins like the vaccine preservative thimerosal.
get real

Lexington, TN

#9049 Feb 28, 2014
Uncoupling of ATP-mediated Calcium Signaling and Dysregulated IL-6 Secretion in Dendritic Cells by Nanomolar Thimerosal

Environmental Health Perspectives, July 2006.

Samuel R. Goth, Ruth A. Chu Jeffrey P. Gregg

This study demonstrates that very low-levels of Thimerosal can contribute to immune system disregulation.

Excerpt: "Our findings that DCs primarily express the RyR1 channel complex and that this complex is uncoupled by very low levels of THI with dysregulated IL-6 secretion raise intriguing questions about a molecular basis for immune dyregulation and the possible role of the RyR1 complex in genetic susceptibility of the immune system to mercury."
get real

Lexington, TN

#9050 Feb 28, 2014
Comparison of Blood and Brain Mercury Levels in Infant Monkeys Exposed to Methylmercury or Vaccines Containing Thimerosal

Environmental Health Perspectives, Aug 2005.

Thomas Burbacher, PhD [University of Washington].

This study demonstrates clearly and unequivocally that ethyl mercury, the kind of mercury found in vaccines, not only ends up in the brain, but leaves double the amount of inorganic mercury as methyl mercury, the kind of mercury found in fish. This work is groundbreaking because little is known about ethyl mercury, and many health authorities have asserted that the mercury found in vaccines is the "safe kind." This study also delivers a strong rebuke of the Institute of Medicine's recommendation in 2004 to no longer pursue the mercury-autism connection.

Excerpt: "A recently published IOM review (IOM 2004) appears to have abandoned the earlier recommendation [of studying mercury and autism] as well as back away from the American Academy of Pediatrics goal [of removing mercury from vaccines]. This approach is difficult to understand, given our current limited knowledge of the toxicokinetics and developmental neurotoxicity of thimerosal, a compound that has been (and will continue to be) injected in millions of newborns and infants."
get real

Lexington, TN

#9051 Feb 28, 2014
Increases in the number of reactive glia in the visual cortex of Macaca fascicularis following subclinical long-term methyl mercury exposure.

Toxicology and Applied Pharmacology, 1994

Charleston JS, Bolender RP, Mottet NK, Body RL, Vahter ME, Burbacher TM., Department of Pathology, School of Medicine, University of Washington

The number of neurons, astrocytes, reactive glia, oligodendrocytes, endothelia, and pericytes in the cortex of the calcarine sulcus of adult female Macaca fascicularis following long-term subclinical exposure to methyl mercury (MeHg) and mercuric chloride (inorganic mercury; IHg) has been estimated by use of the optical volume fractionator stereology technique. Four groups of monkeys were exposed to MeHg (50 micrograms Hg/kg body wt/day) by mouth for 6, 12, 18, and 12 months followed by 6 months without exposure (clearance group). A fifth group of monkeys was administered IHg (as HgCl2; 200 micrograms Hg/kg body wt/day) by constant rate intravenous infusion via an indwelling catheter for 3 months. Reactive glia showed a significant increase in number for every treatment group, increasing 72% in the 6-month, 152% in the 12-month, and 120% in the 18-month MeHg exposed groups, and the number of reactive glia in the clearance group remained elevated (89%). The IHg exposed group showed a 165% increase in the number of reactive glia. The IHg exposed group and the clearance group had low levels of MeHg present within the tissue; however, the level of IHg was elevated in both groups. These results suggest that the IHg may be responsible for the increase in reactive glia. All other cell types, including the neurons, showed no significant change in number at the prescribed exposure level and durations. The identities of the reactive glial cells and the implications for the long-term function and survivability of the neurons due to changes in the glial population following subclinical long-term exposure to mercury are discussed.
get real

Lexington, TN

#9052 Feb 28, 2014
Activation of Methionine Synthase by Insulin-like Growth Factor-1 and Dopamine: a Target for Neurodevelopmental Toxins and Thimerosal

Mol Psychiatry. 2004 Apr;9(4):358-70.

Waly M, Olteanu H, Banerjee R, Choi SW, Mason JB, Parker BS, Sukumar S, Shim S, Sharma A, Benzecry JM, Power-Charnitsky VA, Deth RC. Department of Pharmaceutical Sciences, Northeastern University, Boston, MA

Methylation events play a critical role in the ability of growth factors to promote normal development. Neurodevelopmental toxins, such as ethanol and heavy metals, interrupt growth factor signaling, raising the possibility that they might exert adverse effects on methylation. We found that insulin-like growth factor-1 (IGF-1)- and dopamine-stimulated methionine synthase (MS) activity and folate-dependent methylation of phospholipids in SH-SY5Y human neuroblastoma cells, via a PI3-kinase- and MAP-kinase-dependent mechanism. The stimulation of this pathway increased DNA methylation, while its inhibition increased methylation-sensitive gene expression. Ethanol potently interfered with IGF-1 activation of MS and blocked its effect on DNA methylation, whereas it did not inhibit the effects of dopamine. Metal ions potently affected IGF-1 and dopamine-stimulated MS activity, as well as folate-dependent phospholipid methylation: Cu(2+) promoted enzyme activity and methylation, while Cu(+), Pb(2+), Hg(2+) and Al(3+) were inhibitory. The ethylmercury-containing preservative thimerosal inhibited both IGF-1- and dopamine-stimulated methylation with an IC(50) of 1 nM and eliminated MS activity. Our findings outline a novel growth factor signaling pathway that regulates MS activity and thereby modulates methylation reactions, including DNA methylation. The potent inhibition of this pathway by ethanol, lead, mercury, aluminum and thimerosal suggests that it may be an important target of neurodevelopmental toxins.
get real

Lexington, TN

#9053 Feb 28, 2014
Blood Levels of Mercury Are Related to Diagnosis of Autism: A Reanalysis of an Important Data Set

Journal of Child Neurology, Vol. 22, No. 11, 1308-1311 (2007)

M. Catherine DeSoto, PhD, Robert T. Hitlan, PhD -Department of Psychology, University of Northern Iowa, Cedar Falls, Iowa

The question of what is leading to the apparent increase in autism is of great importance. Like the link between aspirin and heart attack, even a small effect can have major health implications. If there is any link between autism and mercury, it is absolutely crucial that the first reports of the question are not falsely stating that no link occurs. We have reanalyzed the data set originally reported by Ip et al. in 2004 and have found that the original p value was in error and that a significant relation does exist between the blood levels of mercury and diagnosis of an autism spectrum disorder. Moreover, the hair sample analysis results offer some support for the idea that persons with autism may be less efficient and more variable at eliminating mercury from the blood.
get real

Lexington, TN

#9054 Feb 28, 2014
Empirical Data Confirm Autism Symptoms Related to Aluminum and Acetaminophen Exposure

Entropy, November 7, 2012

Stephanie Seneff, Robert M. Davidson and Jingjing Liu

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA, Internal Medicine Group Practice, PhyNet, Inc., Longview, TX 75604, USA

Autism is a condition characterized by impaired cognitive and social skills, associated with compromised immune function. The incidence is alarmingly on the rise, and environmental factors are increasingly suspected to play a role. This paper investigates word frequency patterns in the U.S. CDC Vaccine Adverse Events Reporting System (VAERS) database. Our results provide strong evidence supporting a link between autism and the aluminum in vaccines. A literature review showing toxicity of aluminum in human physiology offers further support. Mentions of autism in VAERS increased steadily at the end of the last century, during a period when mercury was being phased out, while aluminum adjuvant burden was being increased. Using standard log-likelihood ratio techniques, we identify several signs and symptoms that are significantly more prevalent in vaccine reports after 2000, including cellulitis, seizure, depression, fatigue, pain and death, which are also significantly associated with aluminum-containing vaccines. We propose that children with the autism diagnosis are especially vulnerable to toxic metals such as aluminum and mercury due to insufficient serum sulfate and glutathione. A strong correlation between autism and the MMR (Measles, Mumps, Rubella) vaccine is also observed, which may be partially explained via an increased sensitivity to acetaminophen administered to control fever.
get real

Lexington, TN

#9055 Feb 28, 2014
Oxidative Stress in Autism: Elevated Cerebellar 3-nitrotyrosine Levels

American Journal of Biochemistry and Biotechnology 4 (2): 73-84, 2008

Elizabeth M. Sajdel-Sulkowska,- Dept of Psychiatry, Harvard Medical School

Shows a potential link between mercury and the autopsied brains of young people with autism. A marker for oxidative stress was 68.9% higher in autistic brain issue than controls (a statistically significant result), while mercury levels were 68.2% higher.

It has been suggested that oxidative stress and/or mercury compounds play an important role in the pathophysiology of autism. This study compared for the first time the cerebellar levels of the oxidative stress marker 3-nitrotyrosine (3-NT), mercury (Hg) and the antioxidant selenium (Se) levels between control and autistic subjects. Tissue homogenates were prepared in the presence of protease inhibitors from the frozen cerebellar tissue of control (n=10; mean age, 15.5 years; mean PMI, 15.5 hours) and autistic (n=9; mean age 12.1 years; mean PMI, 19.3 hours) subjects. The concentration of cerebellar 3-NT, determined by ELISA, in controls ranged from 13.69 to 49.04 pmol g-1 of tissue; the concentration of 3-NT in autistic cases ranged from 3.91 to 333.03 pmol g-1 of tissue. Mean cerebellar 3-NT was elevated in autism by 68.9% and the increase was statistically significant (p=0.045). Cerebellar Hg, measured by atomic absorption spectrometry ranged from 0.9 to 35 pmol g-1 tissue in controls (n=10) and from 3.2 to 80.7 pmol g-1 tissue in autistic cases (n=9); the 68.2% increase in cerebellar Hg was not statistically significant. However, there was a positive correlation between cerebellar 3-NT and Hg levels (r=0.7961, p=0.0001). A small decrease in cerebellar Se levels in autism, measured by atomic absorption spectroscopy, was not statistically significant but was accompanied by a 42.9% reduction in the molar ratio of Se to Hg in the autistic cerebellum. While preliminary, the results of the present study add elevated oxidative stress markers in brain to the growing body of data reflecting greater oxidative stress in autism.

Excerpt: The preliminary data suggest a need for more extensive studies of oxidative stress, its relationship to the environmental factors and its possible attenuation by antioxidants in autism.”
get real

Lexington, TN

#9056 Feb 28, 2014
Thimerosal Neurotoxicity is Associated with Glutathione Depletion: Protection with Glutathione Precursors

Neurotoxicology. 2005 Jan;26(1):1-8.

James SJ, Slikker W 3rd, Melnyk S, New E, Pogribna M, Jernigan S.

Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital Research Institute, Little Rock, AR

Thimerosol is an antiseptic containing 49.5% ethyl mercury that has been used for years as a preservative in many infant vaccines and in flu vaccines. Environmental methyl mercury has been shown to be highly neurotoxic, especially to the developing brain. Because mercury has a high affinity for thiol (sulfhydryl (-SH)) groups, the thiol-containing antioxidant, glutathione (GSH), provides the major intracellular defense against mercury-induced neurotoxicity. Cultured neuroblastoma cells were found to have lower levels of GSH and increased sensitivity to thimerosol toxicity compared to glioblastoma cells that have higher basal levels of intracellular GSH. Thimerosal-induced cytotoxicity was associated with depletion of intracellular GSH in both cell lines. Pretreatment with 100 microM glutathione ethyl ester or N-acetylcysteine (NAC), but not methionine, resulted in a significant increase in intracellular GSH in both cell types. Further, pretreatment of the cells with glutathione ethyl ester or NAC prevented cytotoxicity with exposure to 15 microM Thimerosal. Although Thimerosal has been recently removed from most children's vaccines, it is still present in flu vaccines given to pregnant women, the elderly, and to children in developing countries. The potential protective effect of GSH or NAC against mercury toxicity warrants further research as possible adjunct therapy to individuals still receiving Thimerosal-containing vaccinations.
get real

Lexington, TN

#9060 Feb 28, 2014
Mercury induces inflammatory mediator release from human mast cells

Duraisamy Kempuraj, Shahrzad Asadi, Bodi Zhang, Akrivi Manola, Jennifer Hogan, Erika Peterson, Theoharis C Theoharides

Journal of Neuroinflammation 2010, 7:20 doi:10.1186/1742-2094-7-20

Background: Mercury is known to be neurotoxic, but its effects on the immune system are less well known. Mast cells are involved in allergic reactions, but also in innate and acquired immunity, as well as in inflammation. Many patients with Autism Spectrum Disorders (ASD) have “allergic” symptoms; moreover, the prevalence of ASD in patients with mastocytosis, characterized by numerous hyperactive mast cells in most tissues, is 10-fold higher than the general population suggesting mast cell involvement. We, therefore, investigated the effect of mercuric chloride (HgCl2) on human mast cell activation.

Methods: Human leukemic cultured LAD2 mast cells and normal human umbilical cord bloodderived cultured mast cells (hCBMCs) were stimulated by HgCl2 (0.1-10 μM) for either 10 min for beta-hexosaminidase release or 24 hr for measuring vascular endothelial growth factor (VEGF) and IL-6 release by ELISA.

Results: HgCl2 induced a 2-fold increase in &#946;-hexosaminidase release, and also significant VEGF release at 0.1 and 1 &#956;M (311±32 pg/106 cells and 443±143 pg/106 cells, respectively) from LAD2 mast cells compared to control cells (227±17 pg/106 cells, n=5, p<0.05). Addition of HgCl2 (0.1 &#956;M) to the proinflammatory neuropeptide substance P (SP, 0.1 &#956;M) had synergestic action in inducing VEGF from LAD2 mast cells. HgCl2 also stimulated significant VEGF release (360 ± 100 pg/106 cells at 1 &#956;M, n=5, p<0.05) from hCBMCs compared to control cells (182 ±57 pg/106 cells), and IL-6 release (466±57 pg/106 cells at 0.1 &#956;M) compared to untreated cells (13±25 pg/106 cells, n=5, p<0.05). Addition of HgCl2 (0.1 &#956;M) to SP (5 &#956;M) further increased IL-6 release. Conclusions: HgCl2 stimulates VEGF and IL-6 release from human mast cells. This phenomenon could disrupt the blood-brain-barrier and permit brain inflammation. As a result, the findings of the present study provide a biological mechanism for how low levels of mercury may contribute to ASD pathogenesis.
get real

Lexington, TN

#9061 Feb 28, 2014
. Influence of pediatric vaccines on amygdala growth and opioid ligand binding in rhesus macaque infants: A pilot study

Acta Neurobiol Exp 2010, 70: 147–164 Polish Neuroscience Society - PTBUN, Nencki Institute of Experimental Biology

Laura Hewitson1,2,*, Brian J. Lopresti3, Carol Stott4, N. Scott Mason3 and Jaime Tomko1

Department of Obstetrics and Gynecology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Thoughtful House Center for Children, Austin, TX, USA; Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; 4Independent Chartered Scientist, Cambridge, UK;

This longitudinal, case-control pilot study examined amygdala growth in rhesus macaque infants receiving the complete US childhood vaccine schedule (1994-1999). Longitudinal structural and functional neuroimaging was undertaken to examine central effects of the vaccine regimen on the developing brain. Vaccine-exposed and saline-injected control infants underwent MRI and PET imaging at approximately 4 and 6 months of age, representing two specific timeframes within the vaccination schedule. Volumetric analyses showed that exposed animals did not undergo the maturational changes over time in amygdala volume that was observed in unexposed animals. After controlling for left amygdala volume, the binding of the opioid antagonist [11C]diprenorphine (DPN) in exposed animals remained relatively constant over time, compared with unexposed animals, in which a significant decrease in [11C]DPN binding occurred. These results suggest that maturational changes in amygdala volume and the binding capacity of [11C]DPN in the amygdala was significantly altered in infant macaques receiving the vaccine schedule. The macaque infant is a relevant animal model in which to investigate specific environmental exposures and structural/functional neuroimaging during neurodevelopment.
get real

Lexington, TN

#9063 Feb 28, 2014
Urinary Porphyrin Excretion in Neurotypical and Autistic Children

Environ Health Perspect. 2010 Oct;118(10):1450-7. Epub 2010 Jun 24.

Woods JS, Armel SE, Fulton DI, Allen J, Wessels K, Simmonds PL, Granpeesheh D, Mumper E, Bradstreet JJ, Echeverria D, Heyer NJ, Rooney JP., Department of Environmental and Occupational Health Sciences, University of Washington

BACKGROUND: Increased urinary concentrations of pentacarboxyl-, precopro- and copro-porphyrins have been associated with prolonged mercury (Hg) exposure in adults, and comparable increases have been attributed to Hg exposure in children with autism (AU).

OBJECTIVES: This study was designed to measure and compare urinary porphyrin concentrations in neurotypical (NT) children and same-age children with autism, and to examine the association between porphyrin levels and past or current Hg exposure in children with autism.

METHODS: This exploratory study enrolled 278 children 2-12 years of age. We evaluated three groups: AU, pervasive developmental disorder-not otherwise specified (PDD-NOS), and NT. Mothers/caregivers provided information at enrollment regarding medical, dental, and dietary exposures. Urine samples from all children were acquired for analyses of porphyrin, creatinine, and Hg. Differences between groups for mean porphyrin and Hg levels were evaluated. Logistic regression analysis was conducted to determine whether porphyrin levels were associated with increased risk of autism.

RESULTS: Mean urinary porphyrin concentrations are naturally high in young children and decline by as much as 2.5-fold between 2 and 12 years of age. Elevated copro-(p < 0.009), hexacarboxyl-(p < 0.01) and pentacarboxyl-(p < 0.001) porphyrin concentrations were significantly associated with AU but not with PDD-NOS. No differences were found between NT and AU in urinary Hg levels or in past Hg exposure as determined by fish consumption, number of dental amalgam fillings, or vaccines received. CONCLUSIONS:These findings identify disordered porphyrin metabolism as a salient characteristic of autism. Hg exposures were comparable between diagnostic groups, and a porphyrin pattern consistent with that seen in Hg-exposed adults was not apparent.
get real

Lexington, TN

#9064 Feb 28, 2014
Sensitization effect of thimerosal is mediated in vitro via reactive oxygen species and calcium signaling.

Toxicology. 2010 July - August;274(1-3):1-9. Epub 2010 May 10.

Migdal C, Foggia L, Tailhardat M, Courtellemont P, Haftek M, Serres M.

Thimerosal, a mercury derivative composed of ethyl mercury chloride (EtHgCl) and thiosalicylic acid (TSA), is widely used as a preservative in vaccines and cosmetic products and causes cutaneous reactions. Since dendritic cells (DCs) play an essential role in the immune response, the sensitization potency of chemicals was studied in vitro using U937, a human promyelomonocytic cell line that is used as a surrogate of monocytic differentiation and activation. Currently, this cell line is under ECVAM (European Center for the Validation of Alternative Methods) validation as an alternative method for discriminating chemicals. Thimerosal and mercury derivatives induced in U937 an overexpression of CD86 and interleukin (IL)-8 secretion similarly to 1-chloro-2,4-dinitrobenzene (DNCB), a sensitizer used as a positive control for DC activation. Non-sensitizers, dichloronitrobenzene (DCNB), TSA and sodium dodecyl sulfate (SDS), an irritant, had no effect. U937 activation was prevented by cell pretreatment with N-acetyl-l-cysteine (NAC) but not with thiol-independent antioxidants except vitamin E which affected CD86 expression by preventing lipid peroxidation of cell membranes. Thimerosal, EtHgCl and DNCB induced glutathione (GSH) depletion and reactive oxygen species (ROS) within 15min; another peak was detected after 2h for mercury compounds only. MitoSOX, a specific mitochondrial fluorescent probe, confirmed that ROS were essentially produced by mitochondria in correlation with its membrane depolarization. Changes in mitochondrial membrane permeability induced by mercury were reversed by NAC but not by thiol-independent antioxidants. Thimerosal and EtHgCl also induced a calcium (Ca(2+)) influx with a peak at 3h, suggesting that Ca(2+) influx is a secondary event following ROS induction as Ca(2+) influx was suppressed after pretreatment with NAC but not with thiol-independent antioxidants. Ca(2+) influx was also suppressed when culture medium was deprived of Ca(2+) confirming the specificity of the measure. In conclusion, these data suggest that thimerosal induced U937 activation via oxidative stress from mitochondrial stores and mitochondrial membrane depolarization with a primordial effect of thiol groups. A cross-talk between ROS and Ca(2+) influx was demonstrated.
get real

Lexington, TN

#9065 Feb 28, 2014
Ancestry of pink disease (infantile acrodynia) identified as a risk factor for autism spectrum disorders.
J Toxicol Environ Health A. 2011 Sep 15;74(18):1185-94.
Shandley K, Austin DW.
Swinburne Autism Bio-Research Initiative (SABRI), Brain and Psychological Sciences Research Centre , Swinburne University of Technology , Hawthorn , Victoria , Australia.
Pink disease (infantile acrodynia) was especially prevalent in the first half of the 20th century. Primarily attributed to exposure to mercury (Hg) commonly found in teething powders, the condition was developed by approximately 1 in 500 exposed children. The differential risk factor was identified as an idiosyncratic sensitivity to Hg. Autismspectrum disorders (ASD) have also been postulated to be produced by Hg. Analogous to the pink disease experience, Hg exposure is widespread yet only a fraction of exposed children develop an ASD, suggesting sensitivity to Hg may also be present in children with an ASD. The objective of this study was to test the hypothesis that individuals with a known hypersensitivity to Hg (pink disease survivors) may be more likely to have descendants with an ASD. Five hundred and twenty-two participants who had previously been diagnosed with pink disease completed a survey on the health outcomes of their descendants. The prevalence rates of ASD and a variety of other clinical conditions diagnosed in childhood (attention deficit hyperactivity disorder, epilepsy, Fragile X syndrome, and Down syndrome) were compared to well-established general population prevalence rates. The results showed the prevalence rate of ASD among the grandchildren of pink disease survivors (1 in 22) to be significantly higher than the comparable general population prevalence rate (1 in 160). The results support the hypothesis that Hg sensitivity may be a heritable/genetic risk factor for ASD.
get real

Lexington, TN

#9066 Feb 28, 2014
Administration of thimerosal to infant rats increases overflow of glutamate and aspartate in the prefrontal cortex: protective role of dehydroepiandrosterone sulfate.

Neurochem Res. 2012 Feb;37(2):436-47. Epub 2011 Oct 21.

Duszczyk-Budhathoki M, Olczak M, Lehner M, Majewska MD. Marie Curie Chairs Program, Department of Pharmacology and Physiology of Nervous System, Institute of Psychiatry and Neurology, 02-957, Warsaw, Poland.

Thimerosal, a mercury-containing vaccine preservative, is a suspected factor in the etiology of neurodevelopmental disorders. We previously showed that its administration to infant rats causes behavioral, neurochemical and neuropathological abnormalities similar to those present in autism. Here we examined, using microdialysis, the effect of thimerosal on extracellular levels of neuroactive amino acids in the rat prefrontal cortex (PFC). Thimerosal administration (4 injections, i.m., 240 &#956;g Hg/kg on postnatal days 7, 9, 11, 15) induced lasting changes in amino acid overflow: an increase of glutamate and aspartate accompanied by a decrease of glycine and alanine; measured 10-14 weeks after the injections. Four injections of thimerosal at a dose of 12.5 &#956;g Hg/kg did not alter glutamate and aspartate concentrations at microdialysis time (but based on thimerosal pharmacokinetics, could have been effective soon after its injection). Application of thimerosal to the PFC in perfusion fluid evoked a rapid increase of glutamate overflow. Coadministration of the neurosteroid, dehydroepiandrosterone sulfate (DHEAS; 80 mg/kg; i.p.) prevented the thimerosal effect on glutamate and aspartate; the steroid alone had no influence on these amino acids. Coapplication of DHEAS with thimerosal in perfusion fluid also blocked the acute action of thimerosal on glutamate. In contrast, DHEAS alone reduced overflow of glycine and alanine, somewhat potentiating the thimerosal effect on these amino acids. Since excessive accumulation of extracellular glutamate is linked with excitotoxicity, our data imply that neonatal exposure to thimerosal-containing vaccines might induce excitotoxic brain injuries, leading to neurodevelopmental disorders. DHEAS may partially protect against mercurials-induced neurotoxicity.
get real

Lexington, TN

#9067 Feb 28, 2014
Neonatal Administration of Thimerosal Causes Persistent Changes in Mu Opioid Receptors in the Rat Brain

Neurochem Res. 2010 November; 35(11): 1840–1847.

Mieszko Olczak, Michalina Duszczyk, Pawel Mierzejewski, Teresa Bobrowicz, and Maria Dorota Majewska1, Department of Pharmacology and Physiology of the Nervous System, Institute of Psychiatry and Neurology, Sobieskiego 9 str., 02-957 Warsaw, Poland, Department of Forensic Medicine, Medical University of Warsaw, Oczki 1 str., 02-007 Warsaw, Poland, Department of Neuropathology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland, Department of Biology and Environmental Science, University of Cardinal Stefan Wyszynski, Wóycickiego Str. 1/3, 01-815 Warsaw, Poland

Thimerosal added to some pediatric vaccines is suspected in pathogenesis of several neurodevelopmental disorders. Our previous study showed that thimerosal administered to suckling rats causes persistent, endogenous opioid-mediated hypoalgesia. Here we examined, using immunohistochemical staining technique, the density of &#956;-opioid receptors (MORs) in the brains of rats, which in the second postnatal week received four i.m. injections of thimerosal at doses 12, 240, 1,440 or 3,000 &#956;g Hg/kg. The periaqueductal gray, caudate putamen and hippocampus were examined. Thimerosal administration caused dose-dependent statistically significant increase in MOR densities in the periaqueductal gray and caudate putamen, but decrease in the dentate gyrus, where it was accompanied by the presence of degenerating neurons and loss of synaptic vesicle marker (synaptophysin). These data document that exposure to thimerosal during early postnatal life produces lasting alterations in the densities of brain opioid receptors along with other neuropathological changes, which may disturb brain development.
get real

Lexington, TN

#9070 Feb 28, 2014
Thimerosal Induces Apoptosis in a Neuroblastoma Model via the cJun N-Terminal Kinase Pathway.

Toxicological Sciences 92 (1). 246-253

ML Herdman, A Marcelo, Y Huang, RM Niles, Dhar S & Kiningham KK.(2006).

Department of Pharmacology, Joan C. Edwards School of Medicine, 1542 Spring Valley Drive, Marshall University, Huntington, WV USA

EXCERPT: In recent years, controversy has surrounded the use of thimerosal in vaccines as mercury is a known neurotoxin and nephrotoxin. Since the controversy began in the late 1990's, much of the thimerosal has been removed from vaccines administered to children in the United States. However, it remains in some, such as the influenza vaccine, and is added to multidose vials used in countries around the world. Studies concentrating on thimerosal-induced neurotoxicity are limited, and exposure guidelines, such as those set by the Food and Drug Administration, are based on research with methylmercury. Interestingly, some in vitro and in vivo studies suggest that ethylmercury may react differently than methylmercury (Aschner and Aschner, 1990; Harry et al., 2004; Magos et al., 1985). Few studies with thimerosal have focused on determining specific signaling pathways involved in neurotoxicity. Establishing these pathways may be an important step in discovering methods of alleviating toxic outcomes in patients exposed to thimerosal….Our study is the first demonstration that thimerosal can induce the activation of JNK and AP-1 in the SK-N-SH neuroblastoma cell line. We showed that activation of cJun and AP-1 transcriptional activity following thimerosal treatment does not appear to be involved in the induction of apoptosis, as demonstrated with the studies using the cJun dominant negative. Furthermore, we were able to show that JNK is an essential upstream component of this pathway through the use of the JNK inhibitor SP600125. This compound was able to attenuate activation of downstream components of mitochondrial-mediated cell death and subsequently protect the cells from apoptosis. These results are significant because identifying specific signaling pathways activated in response to thimerosal exposure presents pharmacological targets for attenuating potential toxicity in patients exposed to thimerosal-containing products.
get real

Lexington, TN

#9071 Feb 28, 2014
Immunological and autoimmune considerations of Autism Spectrum Disorders.

J Autoimmun. 2013 Jul 15. pii: S0896-8411(13)00073-5. doi: 10.1016/j.jaut.2013.05.005.

Gesundheit B, Rosenzweig JP, Naor D, Lerer B, Zachor DA, Procházka V, Melamed M, Kristt DA, Steinberg A, Shulman C, Hwang P, Koren G, Walfisch A, Passweg JR, Snowden JA, Tamouza R, Leboyer M, Farge-Bancel D, Ashwood P.

Jerusalem, Israel.

Autism Spectrum Disorders (ASD) are a group of heterogeneous neurodevelopmental conditions presenting in early childhood with a prevalence ranging from 0.7% to 2.64%. Social interaction and communication skills are impaired and children often present with unusual repetitive behavior. The condition persists for life with major implications for the individual, the family and the entire health care system. While the etiology of ASD remains unknown, various clues suggest a possible association with altered immune responses and ASD. Inflammation in the brain and CNS has been reported by several groups with notable microglia activation and increased cytokine production in postmortem brain specimens of young and old individuals with ASD. Moreover several laboratories have isolated distinctive brain and CNS reactive antibodies from individuals with ASD. Large population based epidemiological studies have established a correlation between ASD and a family history of autoimmune diseases, associations with MHC complex haplotypes, and abnormal levels of various inflammatory cytokines and immunological markers in the blood. In addition, there is evidence that antibodies that are only present in some mothers of children with ASD bind to fetal brain proteins and may be a marker or risk factor for ASD. Studies involving the injection of these ASD specific maternal serum antibodies into pregnant mice during gestation, or gestational exposure of Rhesus monkeys to IgG subclass of these antibodies, have consistently elicited behavioral changes in offspring that have relevance to ASD. We will summarize the various types of studies associating ASD with the immune system, critically evaluate the quality of these studies, and attempt to integrate them in a way that clarifies the areas of immune and autoimmune phenomena in ASD research that will be important indicators for future research.
get real

Lexington, TN

#9072 Feb 28, 2014
. Detection and sequencing of measles virus from peripheral mononuclear cells from patients with inflammatory bowel disease and autism.

Dig Dis Sci. 2000 Apr;45(4):723-9.

Kawashima H, Mori T, Kashiwagi Y, Takekuma K, Hoshika A, Wakefield A.

Department of Paediatrics, Tokyo Medical University, Japan.

It has been reported that measles virus may be present in the intestine of patients with Crohn's disease. Additionally, a new syndrome has been reported in children with autism who exhibited developmental regression and gastrointestinal symptoms (autistic enterocolitis), in some cases soon after MMR vaccine. It is not known whether the virus, if confirmed to be present in these patients, derives from either wild strains or vaccine strains. In order to characterize the strains that may be present, we have carried out the detection of measles genomic RNA in peripheral mononuclear cells (PBMC) in eight patients with Crohn's disease, three patients with ulcerative colitis, and nine children with autistic enterocolitis. As controls, we examined healthy children and patients with SSPE, SLE, HIV-1 (a total of eight cases). RNA was purified from PBMC by Ficoll-paque, followed by reverse transcription using AMV; cDNAs were subjected to nested PCR for detection of specific regions of the hemagglutinin (H) and fusion (F) gene regions. Positive samples were sequenced directly, in nucleotides 8393-8676 (H region) or 5325-5465 (from noncoding F to coding F region). One of eight patients with Crohn disease, one of three patients with ulcerative colitis, and three of nine children with autism, were positive. Controls were all negative. The sequences obtained from the patients with Crohn's disease shared the characteristics with wild-strain virus. The sequences obtained from the patients with ulcerative colitis and children with autism were consistent with being vaccine strains. The results were concordant with the exposure history of the patients. Persistence of measles virus was confirmed in PBMC in some patients with chronic intestinal inflammation.

Tell me when this thread is updated:

Subscribe Now Add to my Tracker

Add your comments below

Characters left: 4000

Please note by submitting this form you acknowledge that you have read the Terms of Service and the comment you are posting is in compliance with such terms. Be polite. Inappropriate posts may be removed by the moderator. Send us your feedback.

Greeneville Discussions

Title Updated Last By Comments
Colorado Springs shooting 1 hr Liberal 51
Need to find the older Tony bowman 1 hr Just wow 2
Carrington super flare of 1859 1 hr Trunketeer 27
Looking 1 hr z0neCrew 22
jennifer cash (Sep '11) 2 hr Interested 13
Any Hot Women Fire Fighters? (Sep '10) 2 hr calhoun 21
Black girl at Wendy's drive thru on 11E 2 hr Sheriff Larry 3
muslum immigrants coming 7 hr z0neCrew 35
More from around the web

Personal Finance

Greeneville Mortgages